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Application of the Chebyshev-Fourier Pseudospectral 
Method to the Eigenvalue Analysis of Circular Mindlin Plates with 

Free Boundary Conditions 

J i n h e e  Lee* 

Depertment o f  Mechano-Informatics, Hongik University, 

Chochiwon, Yeonki-kun,  Choongnam 339-701, Korea 

An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is 

presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though 

the eigenvalues of lower vibration modes tend to convergence more slowly than those of  higher 

vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. 

The eigenvalues of the axisymmetric modes are computed separately. Numerical results are 

provided for different grid resolutions and for different thickness-to-radius ratios. 
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1. I n t r o d u c t i o n  

Plate vibration is important in many applica- 

tions in mechanical, civil and aerospace engi- 

neering. Real plates may have appreciable thick- 

ness so that transverse shear and the rotary in- 

ertia are not negligible as assumed in the classical 

plate theory. As a result, the thick plate model 

based on the Mindlin theory has gained more 

popularity. 

Research on the plate vibration can be divided 

into three categories. First, there exist exact solu- 

tions only for a very restricted number of simple 

cases. Second, semi-analytic solutions are avail- 

able. This includes the Rayleigh-Ritz method and 

the differential quadrature method. Finally, there 

are the most widely used discretization methods 

such as the finite element method, the finite strip 

method and the finite difference method. As it is 

more useful to have analytical results than to 

resort to a numerical method, most efforts focus 
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on developing efficient semi-analytic solutions. 

Mindlin and Deresiewicz provided analytical 

solutions of circular and annular plate for the 

axisymmetric modes (Mindlin, 1951 : Deresiewicz 

and Mindlin, 1955; Deresiewicz, 1956). The trans- 

fer matrix method was used to compute the 

eigenvalues of annular Mindlin plate (Irie et al., 

1979; lrie et al., 1982) and circular Mindlin 

plates (Irie et al., 1980) including non-axisy- 

mmetric modes. With the transfer matrix method, 

however, one has to provide an initial guess of an 

eigenvalue and should improve the initial guess 

by an iterative scheme. The differential quadra- 

ture method was also used to compute the eigen- 

values of axisymmetric Mindlin plates (Liew et 

al., 1997). 

The algorithms that are easier to implement are 

more favored these days than those that run faster, 

because the performances of the computer has 

been drastically improved during the last decade. 

Rapid convergence and good accuracy as well as 

the conceptual simplicity characterize the pseu- 

dospectral method. The pseudospectral method, 

which has stemmed from the spectral method, is 

more closely related to the differential quadrature 

method by employing the collocation process. As 

the formulation is simple and powerful enough 
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to produce approximate solutions close to exact 

solutions, this method has been used extensively 

in the fluid mechanics research (Pyret and 
Taylor, 1990). 

Even though this method can be used for the 

solution of structural mechanics problems, it has 

been largely unnoticed by the structural mec- 

hanics community and few articles where the 

pseudospectral method has been applied are av- 

ailable. The Chebyshev collocation method was 

applied to the free vibration analyses of axisy- 

mmetric circular plate (Soni and Amba-Rao,  

1975) and axisymmetric annular plate (Gupta 

and Lal, 1985), where fourth order differential 

equations were derived in terms of the bending 

rotation by eliminating the transverse displace- 

ment. The collocation method along with the po- 

wer series representation of the dependent vari- 

ables was also used in the free vibration analysis 

of rectangular plates (Mikami and Yoshimura, 

1984). Recently, the pseudospectral method was 

applied to the eigenvalue problems of the circular 

Mindlin plates with clamped and simply support- 

ed boundary conditions (Lee, 2002) and the rec- 

tangular Mindlin plates (Lee, 2003). 

In the present study, the pseudospectral method 

is applied to the free vibration analysis of circular 

Mindlin plates subject to free boundary condi- 

tions. 

2. F o r m u l a t i o n s  

2.1 Circular mindlin plate and the pseudos- 
pectral method 

The equations of motion of a homogeneous and 

isotropic plate based on the Mindlin theory ex- 

pressed in the polar coordinate system (Mindlin, 
1951) are 

OM~ 1 OMro M ~ - M o  @ = o h  a 32gr~ 
Or k r O0 ~ r 12 Ot 2 

3M~o t _1  aMo + 2Mro oh a 02~Vo 
Or- r <30 r - O o -  12 Ot 2 

O@ t _ l ~ o o o O + ~ = p h  32W 
Or Ot 2 

(J) 

where ~r, gro and W represent the bending 
rotation in the radial direction, the bending 

rotation in the circumferential direction and the 

transverse displacement, respectively. Meanwhile, 

h is the plate thickness, p is the density, r ,  8 

and t are the independent variables which repre- 

sent the distance from the origin, the angle in the 

circumferential direction and the time. The stress 

resultants Mr, Mo, Mro, Or and Q0 are defined 
by 

M r = D  L 3r r ( 

mo=D [ 'y (~I£rnt- ~°)-~ OPIPr] 
Or J 

M+ 

where D = E h a / 1 2 ( I - v  2) and G are the flexural 

rigidity and the shear modulus, E and v are the 

Young's modulus and the Poisson ratio, ~=,72 /  
12 is the shear correction factor. 

Substitution (2) into (1), while assuming sim- 

ple harmonic motions in time 

~Fr(r, O, t ) = ~ r ( r ,  O) cos wt 

G ( r ,  O, t )=fso(r ,  O)cos wt (3) 

W ( r ,  O, t )=u , , ( r ,  O)cos wt 

where is w the angular velocity in Iradian/sec] ,  
yields 

Or 2 7Or-  2r z O0 z \ r z D / ~r~ 2r O00r 

3-v O(to flGh &,_ 2 Ph a 
2r" c~0 O Jr co 120 ~T, 

2r aOar 2F ?0~- 2 ~r-Y>.a O0 :± 2r ~*: (4) 

_(1 -~ x-Gh \ A~Gh 1 Ou, 2 oh a 
2/ + ~ ) 0 o  D ," ~0 + ~ ¢ 0 ,  

<~(~,. Ok,. I <:?t]]o Yw _ I &+,. I Yz+,_ co~ ~ w 
8r + T  +} 80 + Or+ +T ar ~ r 2 30 + 

Boyd (1989) suggested several options for the 

pseudospectral representation of functions in the 

polar coordinates, e.g., the shifted Chebyshev 

polynomials of quadratic argument, the unshifted 
Chebyshev polynomials of appropriate parity, 
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and the one-sided Jacobi polynomials. In ad- 

dition, the unshifled Chebyshev polynomials-  

Fourier series are readily applicable when the 

ranges of the indcpcndent variables are chosen 

as - R ~ r < - R  and 0--<0-<~ (Fornberg, 1996) 

because the geometric identity f ( - r ,  0 ) =  

f ( r ,  O+~r) exists in the polar coordinate system. 

Because the governing equations (4) contain 

l / r  and I / r  z terms it is important to avoid the 

apparent singularities by excluding the colloca- 

tions at r = 0 .  It is convenient to use the nor- 
malized variable 

r 
, ~ = R ~ [ - ~ ,  I] (5) 

where R is the radius of the plate. Then, Eg. (4) 

can be rewritten as follows 

3-,~ a¢,o a~Gh &' (o2 P ha z 

' ' + : ,~ (6) 
p,~ k ,_.~ ooa~, 2e: ao 2 a(- ( - o o ' -  ~ ,  

' 1 - , ,  + a'gl '1 ,, h~Gh &' ~. oh '~ , 

The series expansions of the exact solutions ~'r, ,g0 

and w have infinite number of terms. In this 

study, however, they are approximated by the 

partial sums. The eigenwdue problem of the cir- 

cular Mindlin plates with clamped and simply 

supported boundary conditions was solved by 

assuming the dependent variables Cry, ,g0 and w as 
lbllows : 

K L 

k = l l = l  

K L 

G(~, 0) >-~0l~. 0 )=5252 &,B~(e)sin 10 (7) 
k = l l - I  

K L 

u'!~. 0) ~ z~,,,~. 0 ) =  52, Z c ~ C ~ @ c o s ~ , l - l ) 0  
h - l l - I  

where (&t, bkt. ckt are the pseudospectral coeffi- 
cients. Basis functions A, , {~I ,  B~(~)  and Ck(¢ ~) 

are selected such that each and every of them 
satisfy the boundary conditions (Lee, 2002). It 

was possible, for example, to satisfy the clamped 
boundary c o n d i t i o n s  

w = 0 .  ,gr=O, ,go=O at ~ = _ + l  (8) 

by choosing 

A2._~(=7;,=T..(e~)-To(~!,. A_..I~ = T2.+,c.~)-T~ ~/ 
B2._~I~) = T2.{~) - To ~), B,,.,¢4) = T2,,<(4) - T~(~) 

(9) 
C,.,. ~¢4)=T..,,14: , -T0(4), C.,.,,(4)=T2.+,(~)-Z ~ 

(n=l, 2....) 

where Tk(g e) is the Chebyshev polynomial of the 

first kind and of order k, as the basis functions in 

the radial direction. 

It is, however, difficult to find proper test 

functions that satisfy the boundary conditions for 

the flee edge given by 

M r = 0 ,  Mro=O. Qr=O at ~:=--_+ 1 I10) 

The eigenvalues of the circular Mindlin plate 

with free boundary conditions are computed by 

requiring Eg. (10) be satislied at 2L additional 

points along the domain boundary. The basis 

function expansions in Eg. (7) are modified as 
lbllows : 

K+2 L 

k = l / = l  

K+2 L 

¢,o', ~. o! ~ - ' ~ ~¢'0~¢, 0)=52,52, &~Tk_~!P,)sinlO I l l )  
k = l l = [  

K+2 L 

u,l~ O)-v-tb(~. 0)=~2P.  c~zTk ~(~)cos( l - I )0  
k = l l = l  

Substituting Eg. ( l l i  into Eg. (6) and setting the 

residuals be zero at the collocation points (~ ,  t~i) 
given by 

a-(2i- -  11 
~ =  - c o s  2 K  i =  1. ' . . .  It') 

(12) 
0 j=  ] ~ ,  ( j  = 1, .--. L) 

yields 

< : : l  , if" ~',F 2/~'~ /C¢ ~ ' 

0'3 ,G~ L 
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r+2z [ lil I+,~ , ,., 3-'~ L<l~,:.sin@l)O~ 

, t-,, .~ /" I-~, ~GhlL-'(~'llsinIO~l 

(Gh'::I- I . . . . . . . .  - ~ ptl3 ~'~ . . . .  (13)  
c~ .... lk-~t$,:sm 1-I% =-w'~ ).'Z Od~-l¢~,i)slnlO~. 

U/I~i _ I=U k=l/=l 

. p ~+2 L 

i=l,...,h[,. :jq.....L, 

where ( ) '  stands for the differentiation with 

respect to ~:. This can be rearranged in the matrix 
form 

[HI{ d }+ [H*]{ d* }-co2([S]{ d }+[S*]{ d* }) (14) 

where the vectors { d } and { d* } are defined by 

{d}={  an a~ ... a~z bzl b12 ... br~ cu <2 " c~z }r 

{ d* } = {  a(K+m a(K+l)2 " '  &~+Z}L b(K+b, b(K+t)2 "'" (15)  

b(K+2)L C(K+I}I C(K+I)2 "'" C(K+2)L }T 

The size of matrices [H]  and [5"] is 3 K L x 3 K L ,  

and that of [H*]  and [S*] is 3 K L x 6 L .  The 

total number of unknowns in { d } and { d* } is 

3 K L + 6 L ,  whereas the number of equations in 

Eg. (I 3) is 3KL.  The remaining 6L equations are 

obtained from the boundary conditions. When 

Eg. (11) is substituted into Eg. (10), the boun- 

dary conditions at e 6 = + l  are expressed as 

K+2 L 

E E [a~z{ TL, ($~)+uT~-,(&)} cos(l-l)0~ 
k = l / = l  

+ b~ulT~-z (~)cos lO~] =0 
K+2 L 

52.52, [ -a~z(/-I)T~-~(&)sin(l-I)O,  
k-ll=l (16) 

+b~,{ - T,,< (&) + T,L, (&)} sin lg] =o 

~<,< - ~ T;-, (&,l c0s(l-l)0~=0 

( j - L  ..., L) 

The boundary conditions in Eg. (16) can be 

rearranged in the matrix form as 

[ U ] { d } + [ V ] { d * } = { O }  (17) 

where { 0 } is a zero vector. The size of matrices 

[ U] and [ V] is 6 L × 3 K L  and 6L ×6L .  respec- 
tively. Since { d* } can be expressed as 

{ d * } = - [ V ] - l E U ] { d )  (18) 

Eg. (14) can also be reformulated as 

( [H]-IH*]EV]-I[U]){ d }=c0-~([S]-[S'][ V]-'[U]) (19) 

The eigenvalue problem (19) is solved for the 

estimates of the eigenvalues, and the results are 

given in the Table I and Table 3. The numbers 

given in Tables 1--3 are the nondimensional 

parameters 2L~q defined by 

R 2 
/]zpq = w m  (20) 

,/ D /  ph  

2.2 Axisymmetrie vibration of Mindlin 
plates 

The equations of motion of the radially sym- 

metric vibration of Mindlin plates are obtained 

by setting Mro=O, Q0=0, and ~/£0=0 and by 

letting the differentiations with respect to 0 be 

zero. The equations of motion (1) are then 
reduced to 

_ _  oh  3 O2~rr 
OMror ~ Mr-r Mo Qr = 12 Ot 2 

C~Or k- Qr = o h  °~W  
Or r 3t 2 

(21/ 

where the stress resultants Mr, Mo and Qr are 
redefined by 

M r = D  ( O grr + v 

Mo=D ( u 8grrOr + grr / (22)  

Assuming simple harmonic motions in time 

grr(r ,  t ) = ¢ , r ( r ) c o s  cot 

W ( r ,  t ) = w ( r ) c o s  wt 
(23) 

and substitution Eg. (22) into Eg. (21) yields 

da(Ir +r  d(sr .( , K'Gh UGh du'_ ,2 ph 3 
dr2 r2 ~ - ~  - )  #r D dr ~o 12D Cr 

d#r. #r, dXx, 1 dw 2 P 
l- + a_2 t- ~--=-OJ ~ W 

dr r dr r a r  £G 

(24) 

The boundary conditions for free edge are given 
by 
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Mr=O, O r = O  at r = R  (25) 

whereas the condi t ions  at the center of  the plate 

for the axisymmetric  modes are described as 

~ ' r=0,  OT=0  at r = 0  (26) 

Fornberg  (1996) recommended  that it is advan-  

tageous fbr the axisymmetric  analysis using the 

pseudospectral  method to extend the range of  the 

independent  variable to [ - -1 ,  1] and then to use 

the symmetry and ant isymmetry to reduce the 

actual calculat ions to within [0, 1]. For  axisy- 

mmetric vibrat ion modes, r is normal ized as 

Table 1 Convergence test of the nondimensionalized frequency parameters ),.~q o1" the non axisymmetri 

c vibration modes (~,=0.3, h /R=0 .05)  
r 

P q 

T a b l e  2 

K × L  

12;<6 18× 12 18× 18 24× 12 30× 12 

20.086 20.399 20.399 20.176 20.328 

57.287 58.111 58.111 58.292 58.166 

l 11.01 113.20 113.20 112.92 113.03 

200.49 184.22 184.22 182.35 182.23 

5.3827 

34.460 

80.459 

158.55 

12.238 

50.750 

105.79 
179.94 

21.390 

70.874 

134.87 

209.69 

5.2825 5.2825 

34.652 34.652 
81.108 81.108 

143.92 143.92 

224.36 224.36 

12.213 

51.521 

106.45 
176.33 

256.05 

21.485 

70.790 

132.98 

210.52 

308.92 

32.620 32.753 

92.147 92.171 

167.35 162.66 
246.41 245.03 

- -  347.94 

12.213 

51.521 
106.45 

176.33 

256.05 

21.485 

70.790 

132.98 

210.52 

308.92 

5.3535 5.3132 
34.571 34.616 

81.229 81.162 

143.50 143.59 

219.42 219.26 

12.308 

51.541 
106.40 

175.94 

257.67 

21.491 
70.800 

133.62 

209.88 

297.17 

12.312 

51.535 
106.41 
175.92 

257.66 

32.753 32.766 

92.171 92.171 

162.66 162.64 162.64 
245.03 245.19 245.20 

347.94 337.89 :~ 337.67 

21.492 
70.799 

133.63 

209.86 

297.17 

32.766 

92.172 

~ 2  Convergence test of the nondimensionalized frcquency parameters ~,0q 

modes (u=O 3, h/R=O.05) 

36 x 12 40 × 12 

20.215 20.220 

58.252 58.245 

112.95 112.96 
182.30 182.29 

5.3401 5.3380 

34.587 34.590 

81.201 81.197 

143.54 143.54 

219.33 219.32 

12.310 12.310 

51.538 51.537 

106.40 106.40 
175.92 175.92 

257.65 257.65 

21.492 21.492 

70.800 70.800 

133.63 133.63 

209.86 209.86 

297.16 297.16 

32.766 32.766 

92.172 92.172 

162.64 162.64 
245.20 245.20 

337.67 ~ 337.67 

of the axisymmetric vibration 

8 

9 

10 

K = 3  

8.9721 

33.523 
167.06 

K = 6  

8.9686 

37.788 
84.382 

135.15 
249.99 

K = 9  

8.9686 
37.787 

84.443 
146.77 
222.03 

288.69 
424.34 
884.33 

K = I 2  

8.9686 
37.787 
84.443 

146.76 
222.38 
309.04 
402.77 

480.68 
628.81 

I 991.06 

K = I 5  K = I 8  

8.9686 8.9686 
37.787 37.787 

84.443 84.443 
146.76 146.76 
222.38 222.38 
308.98 308.98 
404.45 404.44 
507.07 506.96 
611.67 615.02 
695.31 727.58 L 

K = 3 0  

8.9686 
37.787 

84.443 

146.76 
222.38 
308.98 
404.44 
506.96 

615.01 
727.37 
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Y 
~ = ~ - ~  [0, 1] (27) 

and the equat ions  of  mot ion (24) can be rewritten 

a s  

Cr' , (~; / I + f lGh\  , flGh ,=_~o2 ph3 ,t, 

(28) 
¢ _ ¢ ~ . u ' " .  w '_  ~ p 

Also the boundary  condi t ions  (25) ~ (26) can be 

rewritten as 

~>=0,  w ' = 0  at ~ = 0  

(29) 
~k,~+U~r=0, ~ k r + R = 0  at ~ = 1  

The dependent  variables ~kr(~) and w ( ~ )  can be 

rearranged and approximated  as [bllows : 

~T(~)~T(~)=~ ak{ Zzk+t@- rl(~) -4k (k÷[ )  [ 

(30) 

so that the boundary  condi t ions  (29) are satisfied. 

Also the governing equat ions  (28) can be refor- 

mulated as 

R 2 ~ R28 R282 D ~r-}- =---(-02 (tr 

T a b l e  3 Nondimensionalized frequency parameters ,~q of the circular Mindlin plates (u=0.3, t ' / =  12 for p = 0  

and K × L = 4 0 × I 2  for p 2 1 )  

classical 
P q theory 

1 9.084 

2 38.55 
0 

3 87.80 

4 

1 20.52 

59.86 
1 

3 119.0 
4 

5.253 

35.25 

83.9 

154.0 

12.23 

52.91 
111.3 

192.1 

0.005 

9.0028 

38.436 

87.715 

156.70 

20.33 

59.93 
118.8 
197.8 

5.376 

35.22 

84.35 

153.1 

241.8 

12.427 
52.969 

111.85 

190.50 
288.80 

21.813 
73.468 

142.28 
230.73 
338.81 

33.456 
96.636 

175.50 
273.81 

391.70 

0.01 

9.0017 

38.416 
87.609 

156.37 

20.33 
59.87 

118.6 
197.3 

5.374 

35.19 

84.24 

[52.8 

241.0 

12.421 

52.906 
111.65 

189.97 

287.61 

21.796 

73.350 

141.95 
229.94 

337.18 

33.420 
96.441 
175.00 
272.69 

389.51 

0.02 

8.9976 

38.335 

87.189 

155.04 

20.32 

59.63 

117.8 
195.1 

5.367 

35.11 
83.82 

151.5 

237.8 

12.402 
52.701 

ll0.91 
187.95 

283.14 

21.745 

72.969 

140.75 
226.98 
331.03 

33.313 
95.800 
173.19 

268.55 
381.33 

h/R 
0.05 

8.9686 
37.787 

84.443 

146.76 

20.22 

58.25 

113.0 
182.3 

5.340 
34.59 

81.20 

143.5 

219.3 

12.310 

51.537 
106.40 
175.92 

257.65 

21.492 

70.800 

133.63 
209.86 
297.16 

32.766 
92.172 

162.64 
245.20 

337.67 

0.1 0.15 

8.8679 8.7095 

36.041 33.674 

76.676 67.827 

126.27 106.40 

19.70 18.92 

54.26 49.34 
99.94 86.24 

152.7 126.0 

5.281 

33.03 

73.88 

123.8 

179.3 

12.064 

48.227 
94.531 

147.99 

205.72 

20.801 
64.790 

115.96 
172.41 
232.09 

31.270 
82.722 
137.95 

197.06 
258.33 

5.206 

30.94 

65.51 

104.5 

145.2 

11.722 

44.116 
81.930 

122.49 

163.95 

19.872 

58.044 
98.446 

140.26 
182.25 

29.334 
72.464 

114.96 
157.77 
200.14 

0.2 

8.5051 

31.111 

59.645 

90.059 

17.98 

44.43 

74.34 

105.0 

5.115 

28.67 

57.72 

88.53 

119.3 

11.314 

39.955 
70.863 

102.27 

132.87 

18.816 

51.545 
83.801 

115.57 
145.66 

27.255 
63.253 
96.513 

128.42 
157.54 
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The expansions (30) are substituted into Eg. (31) 

and are collocated at the internal collocation 

points ~,. redefined by 

7r(2i-- I) 
. ~=cos  4 K  ( i = l ,  ..., K) (32) 

Then, we finally have 

:~[ _, . 4kk-I . ° 4k:k-I;. 

R -~ R-~, R-~: 

-0~ ~ ' l  lZk+l';,"-ll~;:,?l=-O; ~, 
l:V ~=1 " ' '(33) 

v b~ I R ~ 

:-'~' ~ E  o,, T~,: ;,,-T,:~E }-,z, T:~.~,-T, ~: 4kk-I : i 
A%" ~: ]*; ";' 'i' 

i=I,..,.E 

The total number of equations matches the num- 

ber of constants ai, " ' ,  ax-, bb "", bK in Eg. (33), 

and the eigenvalue problem (33) is solved for the 

estimates of the eigenvalues for the axisymmetric 

vibration modes. 

3. N u m e r i c a l  R e s u l t s  and D i s c u s s i o n s  

A preliminary run for the convergence check of 

Eg. (19) is carried out for the thickness-to-radius 

ratio k /R=0 .05 .  Because the eigenvalues for the 

axisymmetric vibration modes (p=0)  converge 

too slowly the computed frequency parameters 

/]~q lbr p-->l are given in Table 1. and the con- 

vergence of eigenvalues corresponding to the ax- 

isymmetric modes is treated separately. The Pois- 

son ratio u is 0.3 throughout the paper. Table 1 

shows that the eigenvalues fbr the grid resolution 

K × L = I 8 ×  12 are identical to those for K x L :  

18×18, which indicates that L = I 2  is sufficient 

for the eigenvalues for 1 --.<,0--<5 to converge to five 

significant digits in the circumferential direction. 

It shows that the convergence of the eigenvalues is 

slower in general when compared with that of 

clamped boundary conditions (Lee, 2002). It is 

also worthwhile to note that the convergence of 

eigenvalues of the vibration modes for p_>4 is 

achieved to five digits for I £ x L = 3 0 x  12, while 

the grid resolution of K X L = 3 6  × 12 is required 

for the convergence of eigenvalues for p = 3  to 

five digits. With the spatial resolution of K × L - -  

40× 12, the convergence is achieved to four digits 

for the vibration i-nodes for p - - I  and p=2.  It 

turns out that the eigenvalues of lower vibration 

modes converge more slowly than those of higher 

vibration modes within the range of p--<5 and 

q_<4, which is opposed to the results of former 

study (Lee, 2002) where the eigenvalues of lower 

modes converged taster for the clamped boundary 

conditions. It is conjectured that this odd be- 

havior is attributable to the way the boundary 

condition is treated as given in Egs. (16) -- (19). 

Another convergence test of the eigenvalt, es lbr 

the axisymmetric vibration modes is carried out, 

which is based on the axisymrnetric model of 

Eg. (33), and the results are given in Table 2. 

Table 2 shows that the eigenvalues of the first 

four modes ( p : 0 ,  l<_q<_4) for the thickness 

to-radius ratio h / R - - O . 0 5  converge ['or the grid 

resolution K = 9  to five significant digits and the 

first eight modes (p=0,  I_<q_<8) for K = 1 8 .  It 

also clearly demonstrates that the eigenvalues of 

the lower vibration modes converge ['aster than 

those of higher vibration modes. Fast conver- 

gence of eigenwdues is achieved because the test 

functions in Eg. (30) satisfying the boundary 

conditions are used in the computation. 

The nondimensionalized frequency parameters 

A,~q for the free vibration of Mindlin plates with 

flee edge are given in Table 3 lbr different thick- 

ness-to-radius ratios. The eigenwdues of" the ax- 

isyrnmetric modes ( p : 0 )  are computed from Eg. 

(33). The grid resolutions used in Table 3 are 

K - - 12  for the axisymmetric modes and K ×  L :  

40× 12 for the non-axisymmetric modes ( p > l ) ,  

respectively. Eigenvalues based on the classical 

theory (Blebins, 1979) are given in Table 3 f'or 

comparison. Table 3 shows that the computed 

eigenvalues are in good agreement with those of 

the classical theory when k / g  is very small, 

however, they deviate considerably as h / R  be- 

comes larger. 

4. C o n c l u s i o n s  

A Chebyshev Fourier pseudospectral method 
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has been applied to the flee vibration analysis of 

the circular Mindlin plate with free boundary 

conditions. The formulation was straightforward 

and efficient lbr writing a code tbr computation. 

Numerical examples were provided lbr various 

thickness-to-radius ratios. It is shown, however, 

that the eigenvalues of lower vibration modes 

tend to convergence more slowly than those of 

higher vibration modes, even though the eigen- 

values converge for sufficiently fine pseudospec- 

tral grid resolutions. The eigenvalues of the ax- 

isymmetric modes were computed separately. The 

results from this study agree with those of the 

classical plate theory when the thickness-to-radi- 

us ratio is small but present some quantitative 

differences of natural frequencies for thicker 

plates. 

References  

Blevins, R. D., 1979, FormulasJbr Natural Fre- 

quencl' and Mode Shape, Van Nostrand Rein- 

hold, New York, pp. 240--240. 

Boyd, J. P., 1989, Chebyshev and Fourier spec- 
tral methods, Lecture notes in engineering 49, 

Springer-Verlag, Berlin, pp. 213--235. 

Deresiewicz, H., 1956, "~Symmetric Flexural 

Vibrations of a Clamped Disk," Journal of Ap- 

plied Mechanics, Vol. 12, pp. 319--319. 

Deresiewicz, H. and Mindlin, R.D., 1955, 

"'Axially Symmetric Flexural Vibration of a Cir- 

cular Disk," Transactions of ASME Journal of  

Applied Mechanics, Vol. 22, pp. 86--88. 

Fornberg, B., 1996, A Practical Guide to Pseu- 

dospectral Methods, Cambridge University Press, 

pp. 87--88 and pp. 110-- I 11. 

Gupta, U. S. and Lal, R., 1985, "Axisymmetric 

Vibrations of Polar Orthotropic Mindlin Annular 

Plates of Variable Thickness," Journal of  Sound 
and Vibration, Vol. 98, No. 4, pp. 565--573. 

lrie. T., Yamada, G. and Aomura, S., 1979, 

"'Free Vibration of a Mindlin Annular Plate of 

Varying Thickness," Journal of Sound and Vi- 

bration, Vol. 66, No. 2, pp. 187--197. 

lrie, T., Yamada, G. and Aomura, S., 1980, 

"'Natural Modes and Natural Frequencies of 

Mindlin Circular Plates," Journal of Applied 

Mechanics, Vol. 47, pp. 652--655. 

lrie, T., Yamada, G. and Takagi, K., 1982, 

"Natural Frequencies of Thick Annular Plates," 

Journal of  Applied Mechanics, Vol. 49, pp. 633-- 

638. 

Lee, J., 2002, "Eigenvalue Analysis of Cir- 

cular Mindlin Plates Using the Pseudospectral 

Method," Transactions of  KSME A, Vol. 26, 

No. 6, pp. 1169-- 1177. (in Korean with English 

Abstract) 

Lee, J., 2003, "Eigenvalue Analysis of Rec- 

tangular Mindlin Plates by Chebyshev Pseu- 

dospectral Method," KSME International Jour- 
nal, Vol. 17, No. 3, pp. 370--379. 

l_iew, K.M., Han, J.B. and Xiao, Z.M., 

1997, "Vibration Analysis of Circular Mindlin 

Plates Using Differential Quadrature Method," 

Journal of  Sound and Vibration, Vol. 205, No. 5, 

pp. 617--630. 

Mikami, T. and Yoshimura, J., 1984, "Appli- 

cation of the Collocation Method to Vibration 

Analysis of Rectangular Mindlin Plates," Com- 

puters & Structures, Vol. 18, No. 3, pp. 425--432. 

Mindlin, R.D., 1951, "'Influence of Rotary 

Inertia and Shear on Flexural Motion of lso- 

tropic, Elastic Plates," Transactions of ASME 

Journal of Applied Mechanics, Vol. 18, pp. 3 1 -  

38. 

Pyret, R. and Taylor, T.D.,  1990, Computa- 

tional methods for fluid flow, Springer-Verlag, 

pp. 227-- 247. 

Soni, S. R. and Amba-Rao, C. L., 1975, "'On 

Radially Symmetric Vibrations of Orthotropic 

Non-unitbrm Disks Including Shear Deforma- 

tion," Journal of  Sound and Vibration, Vol. 42, 

No. I, pp. 57--63. 




